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Abstract—Android is the most popular mobile operating
system with a market share of over 80% [23]. Due to its
popularity and also its open source nature, Android is now the
platform most targeted by malware, creating an urgent need for
effective defense mechanisms to protect Android-enabled devices.

In this paper, we propose a novel Android malware classifi-
cation method called HADM, Hybrid Analysis for Detection of
Malware. We first extract static and dynamic information, and
convert this information into vector-based representations. It has
been shown that combining advanced features derived by deep
learning with the original features provides significant gains [28].
Therefore, we feed both the original dynamic and static feature
vector sets to a Deep Neural Network (DNN) which outputs a
new set of features. These features are then concatenated with the
original features to construct DNN vector sets. Different kernels
are then applied onto the DNN vector sets. We also convert the
dynamic information into graph-based representations and apply
graph kernels onto the graph sets. Learning results from various
vector and graph feature sets are combined using hierarchical
Multiple Kernel Learning (MKL) [14] to build a final hybrid
classifier.

I. INTRODUCTION

With over 260 million shipments, Android has dominated
the smart phone market with a 78.0% share in the first quarter
of 2015 [17]. Unfortunately, the growing popularity of Android
smart phones and tablets has made this popular OS a prime
target for security attacks. In 2014, nearly one million unique
malicious applications were produced, a 391% increase from
2013. Some estimates say that Android has been targeted by
97% of the developed mobile malware [24], creating an urgent
need for effective defense mechanisms to protect Android-
enabled devices.

Researchers have proposed various characterization meth-
ods to counter the increasing amount and sophistication of
Android malware. These methods can be categorized into:
static analysis, dynamic analysis, and hybrid techniques. Static
analysis is based on extracting features by inspecting an
application’s manifest and disassembled code [35], [15], [3],
[41], [38]. By contrast, dynamic analysis methods monitor the
application’s behavior during its execution [12], [6], [37],
[31], [27], [33], [11]. Hybrid methods typically analyze an
application before installation and also record its execution
behavior [4], [43], [32], [22], [34], [21], [42]. These sets
of static and dynamic information are then used together to
detect malicious behavior. Static analysis is usually lightweight
and can be performed on a user’s device while dynamic
analysis is usually performed in an offline emulator due to
simulation overhead. Static and dynamic analysis both have
their disadvantages. Static analysis techniques can be defeated

by malware packing and other malware obfuscation tech-
niques. On the other hand, dynamic analysis techniques can
be defeated if the malware notices it is running in an emulator
or sandboxed environment [26]. The hybrid analysis method
is gaining more popularity for its combined advantages from
both static and dynamic analysis and its capability to yield
better accuracy in detecting malware.

In this paper, we propose HADM, Hybrid Analysis for
Detection of Malware. . We first extract a set of static and
dynamic features. For static features, they are converted into
vector-based representations. For dynamic features, in partic-
ular system call invocations, they are converted into vector-
based and graph-based representations. Then, for all vector-
based representations, we apply deep learning techniques to
train a neural network for each of the vector set. Deep
learning has been widely studied and shown to perform well
on machine learning domains including speech recognition,
natural language processing, and image classification in the
past two decades. In our method, we train one Deep Neural
Network (DNN) constructed by stacking Restricted Boltzmann
Machines (RBM) for each of our feature vector sets including
system call feature vectors and static feature vectors. The DNN
learned features are concatenated to the original features to
form the new DNN feature vector sets. Experiments show that
higher level features learned from DNN in conjunction with
the original features can improve the classification accuracy
of each individual feature vector set. Different kernels are
then applied on the new DNN feature vector sets to compute
similarities of the Android applications. Similarly, different
graph kernels are applied on the graph feature sets. The
similarity output from each vector kernel or graph kernel can
be subsequently constructed as a kernel matrix and fed into a
machine learning model, e.g., Support Vector Machine (SVM),
for classification. In HADM, a two-level MKL is applied to
combine the discriminative power of different kernel matrices.
In the first level, kernel matrices from different kernels are
combined as the learning result of the corresponding feature
vector set. Similarly, kernel matrices from different graph
kernels are combined. In the second level, MKL is applied
again to combine all learning results from the first level. The
final kernel matrix is then fed into an SVM to construct our
hybrid classification model. Figure 1 shows the framework of
our HADM method.

For static analysis, we extract nine different features includ-
ing requested permissions, permission request APIs, used per-
missions, advertising networks, intent filters, suspicious calls,
network APIs, providers, and low level instruction sequences.
For dynamic analysis, we run each application in an Android



emulator named Genymotion1, and collect its system call
invocations using a Linux utility called strace. Among these
features, the instruction sequences and system call sequences
are represented using n-gram vectors and all the other features
are converted into histograms that are essentially 1-grams. In
addition, the system call invocations are also converted into
n-gram graphs. For the n-gram vectors and n-gram graphs, we
evaluate four different n values including 1, 2, 3, and 4. As a
result, we generate four vector sets for instruction sequences,
four vector and four graph sets for system call sequences,
and one vector set for each of the other features. The 16
feature vector sets are subsequently fed into DNN training and
combined with the 4 graph sets using hierarchical MKL at the
end.

To evaluate the performance of HADM, we collected
thousands of Android applications across all categories of
Google Play. We also collected a large number of Android
malware from VirusShare 2. In our dataset, 4002 samples
are categorized as benign applications and 1886 samples are
categorized as malware. Experiments on this dataset show,
for dynamic features, the best classification accuracy that can
be achieved is 83.3% by feature-vector-based representations
and 87.3% by graph-based representations. On average, graph-
based representations are able to achieve 5.2% absolute clas-
sification accuracy improvement over the feature-vector-based
representations. For original static feature vector sets, the best
classification accuracy that can be achieved is 93.5%. Finally,
by applying hierarchical MKL, classification accuracy of the
final hybrid classifier is further improved to 94.7%.

Our major contributions are summarized below:

• We propose HADM, a hybrid Android malware clas-
sification method utilizing multiple feature sets and
different representations.

• We apply deep learning to learn new features for
the vector sets and concatenate new features with the
original features to boost classification accuracy.

• We apply hierarchical MKL to combine different
kernel learning results from different features and thus
further improve classification accuracy.

II. FEATURE SETS

In total, 10 static and dynamic feature sets are extracted
from our malicious and benign Android applications including
requested permissions, permission request APIs, used per-
missions, advertising networks, intent filters, suspicious calls,
network APIs, providers, instruction sequences, and system
call sequences. Among them, instruction sequences and system
call sequences are converted into 1, 2, 3, and 4-gram vectors.
The other non-sequence features are represented using 1-gram
vectors. For system call sequences, we also convert them into
1, 2, 3, and 4-gram graphs. In total, we generate 16 feature
vector sets and 4 graph sets.

A. Hybrid Analysis Features

Requested permissions: Permission system is the first
barrier and one of the most important security mechanisms

1http://www.genymotion.com
2http://virusshare.com

introduced by Android. Therefore, the requested permission
is one of the most used static features in Android application
analysis [13]. Prior to installation of an application, it provides
users with a list of requested permissions (e.g., SEND SMS,
RECEIVE SMS, INSTALL PACKAGE). Users normally grant
the permissions without knowledge of the capabilities of these
permissions, therefore an application can install itself and
perform malicious behaviors such as sending premium SMS
messages. In our experiments, we collect 1304 requested
permissions listed in manifest files of our Android samples.

Permission request APIs: The Android permission can
be requested by a series of critical API calls. For exam-
ple, a installPackage API call can request permission IN-
STALL PACKAGE and a sendDataMessage call requests per-
mission SEND SMS. In total, 246 such API calls are collected
from our benign and malicious samples.

Used permissions: Some Android applications request
multiple permissions, but only use a subset of the requested
permissions. By extracting the used permissions, we can obtain
a more precise observation of an application’s intention. In
total 66 used permissions are collected from our dataset.

Advertising networks: Advertising networks are increasing
in numbers in the Android platform to offer developers a
variety of monetization models and to help them maximize
their revenues. This feature may not be necessarily related to
malicious behaviors, but we collect 76 different advertising
networks from our samples. The most popular networks are
Google Ads, AdMob, and MobClik.

Intent filters: Intent is information about inter-process and
intra-process communication. It is a passive data structure
holding an abstract description of an action to be performed.
Therefore, we can infer it as the intentions of the application.
For example, an application can take a picture or can dial a
phone number. In total, we collect 1016 different intent filters
from our dataset.

Suspicious calls: A subset of API calls is capable of
accessing sensitive data, communicating over the network,
sending and receiving messages, and executing external com-
mands. These suspicious API calls are frequently used by
malware developers. For example, readSMS can read SMS
messages, sendSMS can send SMS messages, getCellLocation
is able to get your location, Runtime�exec is able to execute
external commands, and System�load is able to load external
libraries. In total, we collect 394 such calls.

Network APIs: We extract the used network
APIs because malware tends to access the
network and send out sensitive data. For instance,
android.net.wifi.STATE CHANGE broadcasts an intent action
indicating that the state of Wi-Fi connectivity has changed;
android.net.wifi.supplicant.CONNECTION CHANGE notices
both connections to and disconnections from a wifi network.
In total, we collect 29 such APIs from our samples.

Providers: The provider declares a component which sup-
plies structured access to data managed by the application. For
example, android.provider.Telephony.SMS RECEIVED broad-
casts that a new text-based SMS message has been received
by the device and this intent will be delivered to all registered



Fig. 1: This figure shows framework of HADM. Static features are converted to feature vector representations and dynamic
features are converted to feature vector and graph representations. Each feature vector set is fed into a DNN for learning. The
DNN features are concatenated with the original feature vectors to construct DNN feature vector sets. Multiple kernels and graph
kernels are applied to each DNN or graph feature set. The learning results are then combined using a two-level MKL.

receivers as a notification. In total, we are able to collect 966
providers from our samples.

Instruction sequences: We utilize an Android tool called
Androguard3 to extract low level instructions (also known as
Dalvik bytecode) from an application. For each instruction,
we keep only its name, while parameters and output are
abandoned. We are able to collect 159 unique instructions from
our samples.

System call sequences: For dynamic analysis, system calls
are the most used features [13]. To capture runtime execution
behaviors of an application, we record the system call invoca-
tions during execution of the application using the Linux strace
tool [1]. The applications are emulated in an Android emulator
named Genymotion. To record all the system call invocations,
we run strace on the zygote process. It starts during the
Android initialization and is used to launch applications. We
then execute the testing application. During the emulation, an
application is first executed without user interaction for 20
seconds. We then stimulate hundreds of events generated by
the Monkey toolkit provided by the Android SDK. Monkey
is able to generate different types of events including touch
events, motion events, trackball events, navigation events,
system key events, and activity launching events. Other than
the stimulation from Monkey, we feed the emulation additional
phone call, SMS message, and movement events. All system
call invocations in the emulation are recorded by strace. From

3https://code.google.com/p/androguard/

a strace log of the zygote process, we extract invocations only
belong to the testing application. Similarly, the parameter and
output are ignored. In total, we are able to collect 213 unique
system calls.

B. Feature Vector Representations

After extracting the features, we embed them into vector
space using an n-gram representation. An n-gram is a contigu-
ous sequence of n items from a given sequence of features.
There are two parameters associated with n-gram: n as the
number of items in the sequence, and L as the number of
unique items in the feature set. Given n and L, there can be
Ln unique n-grams. Therefore, the dimension of the resulting
n-gram feature vector goes exponentially as we increase the n
value.

In HADM, we first build 1-gram vectors for all features.
Then for instruction and system call sequences, we extract the
top 20 instructions and system calls, and build 2-gram, 3-gram,
and 4-gram vectors for both. In total, we generate four feature
vector sets for instruction sequences, four feature vector sets
for system call sequences, and one feature vector set for each
of the other features. The 12 static and 4 dynamic feature
vector sets are inputs for subsequent deep learning.

C. Graph Representation

For dynamic system call invocations, we also convert them
into a graph-based representation called the n-gram graph. To



construct the graph, a process tree of the Android application is
first extracted from the strace log. Each process is represented
as a vertex and connected with its child processes. Then, for
each vertex, we collect system call invocations belonging to the
corresponding process, and convert them to an n-gram vector.
The resulting n-gram vector is attached to the vertex as its
label. In total, we generate 1-gram, 2-gram, 3-gram, and 4-
gram graphs for the system call sequences.

III. DEEP LEARNING MODEL

Deep learning has shown promise in speech recognition,
image classification, and other machine learning domains. It
has also been shown that combining advanced features derived
by deep learning with the original features provides significant
gains. For example, Sarikaya et al. obtained 0.1% to 1.9%
absolute classification accuracy improvements on a problem of
natural language understanding using combined features [28].
After generating 16 feature vector sets, we train one Deep
Neural Network (DNN) for each of the vector sets. Then
the DNN learned features are concatenated with the original
feature vectors and used for classification.

In our experiment, we select Deep Auto-encoder as our
deep learning model. It is a DNN whose output target is the
input data itself which serves our purpose of learning new
features and combining new features with the original features
for classification. The building block of a deep auto-encoder
is a probabilistic model called Restricted Boltzmann Machine
(RBM). DNN is often initialized or pre-trained using stacked
RBMs. In some literature, DNN is also referred to as Deep
Belief Network (DBN) [10].

A. Restricted Boltzmann Machine

An RBM is an energy-based generative model that consists
of two layers: a layer of binary visible units v and a layer of
binary hidden units h. The units in different layers are fully
connected with no connection between units in the same layer.
Figure 2(a) shows an RBM with 2 units in the visible layer
and 3 units in the hidden layer.

Details of how to train an RBM can be found in [16].
In our experiments, the standard Contrastive Divergence (CD)
learning procedure is applied. In the training process, input
vectors are first divided into batches and then fed into a training
process for a number of iterations until convergence. The
training process consists of three steps. The first step is called
positive or forward propagation. In this step, probabilities of
hidden units are sampled from the input and the positive
gradient is computed. The second step is negative or backward
propagation where the visible units are reconstructed from the
hidden units and then the hidden activities are re-sampled from
the reconstructed visible units. The negative gradient is also
computed in this step. In the third step, the weight matrix is
updated based on the difference of the positive gradient and
the negative gradient. Algorithm 1 shows the training process
of RBM.

In our experiments, we use the same parameters for training
RBMs as used in [19] . The RBMs are initialized with very
small random weights and trained for 80 iterations using mini-
batches of size 128. The learning rate is set to be 0.001. We
also use a momentum of 0.9 to speedup the learning process.

Algorithm 1 RBM Training Process
Input: batch set, Weight matrix W , learning rate l
Output: Weight matrix W

1: for number of iterations do
2: for number of batches do
3: From batch V , compute hidden activation H =
V ×W

4: Compute positive gradient Gp = V ×H
5: From H , sample a reconstruction V

′
= H ×W

6: From V
′
, re-sample hidden activation H

′
= V

′ ×
W

7: Compute negative gradient Gn = V
′ ×H ′

8: Update weight matrix W , W+ = l × (Gp −Gn)
9: end for

10: end for

(a) RBM

(b) Deep Auto-encoder

Fig. 2: An example of RBM and Deep Auto-encoder. (a):
a RBM with 2 units in the visible layer and 3 units in the
hidden layer. (b): Deep auto-encoder constructed by flipping
the stacked RBMs.

All the training in our experiments are performed on an AMD
RadeonTM HD 7970 GPU.

B. Deep Auto-encoder

Deep auto-encoder can be constructed by stacking indepen-
dently trained RBMs. Each RBM is stacked on top of previous
RBM such that the hidden layer of previous RBM become the
visible layer of the current RBM. Each new layer of deep auto-
encoder aims to extract higher-level dependencies between the
original input vectors, thereby improving the ability of the
network to capture the underlying regularities in the data [25].
The first layer of the network is expected to extract low-
level features from the input vectors while each new layer is



expected to gradually refine previously learned concepts, and
therefore produce more abstract concepts [20].

After layer-by-layer pre-training the RBMs, we stack them
and then “unroll” the generative model to form a deep auto-
encoder. In our experiments, we first train four RBMs and
stack them to form a five-layer network. The weight matrices
of RBMs are used as the initial weight matrices for the five-
layer network. By “unrolling” the stacked RBMs, we flip
the five-layer network and create a deep nine-layer network
whose lower layers use the matrices to encode the input
and whose upper layers use the matrices in reverse order
to decode the input. Figure 2(b) shows a deep auto-encoder
constructed by stacking multiple RBMs and then “unrolling”
the stacked RBMs. The auto-encoder can be fine-tuned using
back-propagation of error derivatives [9]. Algorithm 2 shows
the training process of the deep auto-encoder. To fine-tune the
auto-encoder, we use a learning rate of 10−6 for all layers
and train for 5 iterations. The fine-tune processes in our
experiments are also performed on an AMD RadeonTM HD
7970 GPU. Output from the central layer of the deep auto-
encoder is concatenated to the original input to improve the
classification accuracy. We refer to the resulting feature vectors
as DNN vectors in the remaining sections of this paper.

Algorithm 2 Deep Auto-encoder Training Process
Input: batch set, Weight matrices, learning rate l
Output: Weight matrices

1: for number of iterations do
2: for number of batches do
3: Assign batch V to be A0, the activity of layer 0
4: for layer i from 1 to n do
5: Compute the activity of layer i,Ai = Ai−1 ×
Wi−1

6: end for
7: Compute error for last layer, En = An −A0

8: for layer i from n-1 to 0 do
9: Back propagate error, Ei = Ei+1 ×Wi

10: end for
11: for layer i from 0 to n-1 do
12: Update weight matrix, Wi+ = l ×Ai × Ei+1

13: end for
14: end for
15: end for

IV. CLASSIFICATION

To automatically classify the Android applications into
benign or malicious applications, we calculate similarities
between feature vectors and similarities between graphs de-
pending on the representation we are using. The similarity
measures are constructed as a kernel matrix and fed into a
Support Vector Machine (SVM) for classification. We choose
the SVM algorithm due to its accuracy as a supervised
approach for binary classification. Additionally, SVMs can
perform classification based on a precomputed kernel matrix
constructed using graph kernels or Multiple Kernel Learning
(MKL) in our context while most of the other machine learning
models cannot. To further improve the accuracy, we also
apply a hierarchical MKL method to combine different kernel
matrices and learn the final classifier.

A. Kernel Matrix Construction for Vectors

For feature vector representations, we use different kernels
to calculate similarities between each pair of vectors. The
similarity measures are constructed as kernel matrices and fed
into an SVM. For a given dataset D = {v1, v2, . . . , vn} of
vectors, a kernel matrix Mn×n is a symmetrical matrix where
every element M(i, j) = k(vi, vj) refers to the kernel function
applied to a pair of vectors vi and vj . We evaluated three
popular kernels including the Gaussian kernel (Eq. 1), the
Intersect kernel (Eq. 2) and the Linear kernel (Eq. 3).

kgaussian(x, y) = exp(−
n∑

i=1

(xi − yi)2

σ
) (1)

kintersect(x, y) =

n∑
i=1

min(xi, yi) (2)

klinear(x, y) =

n∑
i=1

xi ∗ yi (3)

B. Kernel Matrix Construction for Graphs

For the graph sets converted from dynamic system call
sequences, we use Shortest Path Graph Kernel (SPGK) to
compute graph similarities and construct kernel matrices. In the
SPGK algorithm, an input graph is converted to all pair shortest
path graph using Floyd-Washall algorithm first. Given a graph
G = 〈V,E〉 comprising a set V of vertices together with a set
E of edges, a shortest path graph is a graph S = 〈V ′, E′〉,
where V ′ = V and E′ = {e′1, . . . , e′m} such that e′i = (ui, vi)
if the corresponding vertices ui and vi are connected by a path
in G. The edges in the shortest path graph are labeled with the
shortest distance between the two nodes in the original graph.

The SPGK algorithm for two shortest path graphs S1 =
〈V1, E1〉 and S2 = 〈V2, E2〉 is computed as:

KSPGK(S1, S2) =
∑

e1∈E1

∑
e2∈E2

kwalk(e1, e2) (4)

where kwalk is a kernel for comparing two edge walks. The
edge walk kernel kwalk is the product of kernels on the vertices
and edges along the walk. It can be calculated based on the
starting vertex, the ending vertex, and the edge connecting
both. Let e1 be the edge connecting nodes u1 and v1 of graph
S1, and e2 be the edge connecting nodes u2 and v2 of graph
S2. The edge walk kernel is defined as follows:

kwalk(e1, e2) = knode(u1, u2) · kedge(e1, e2) · knode(v1, v2)
(5)

where knode and kedge are kernel functions for comparing
vertices and edges respectively. The same notations are also
applied in the following sections.

In our experiments, we pick the Brownian Bridge kernel
(Eq. 6) as used in Borgwardt et al. [5] with a c value
of 2 for kedge. For knode, we evaluated the same kernels
used on constructing kernel matrices for vector sets including
the Gaussian kernel (Eq. 1), the Intersect kernel (Eq. 2)
and the Linear kernel (Eq. 3). To speedup the graph kernel
computation, we implement the parallelization of SPGK on
multi-core CPUs and GPUs according to [36].



kbrownian(e1, e2) = max(0, c− |e1 − e2|) (6)

C. Support Vector Machine

SVMs consist of two phases: training and testing. Given
positive and negative samples in the training phase, an SVM
finds a hyperplane which is specified by the normal vector
w and perpendicular distance b to the origin that separates
the two classes with the largest margin γ [7]. Figure 3 shows
a schematic depiction of an SVM. During the testing phase,
the samples are classified by the SVM prediction model and
assigned either a positive or negative label. The decision
function f of the linear SVM is given by

f(x) = 〈w, x〉+ b (7)

where x is a feature vector representing the sample. It is
classified as positive if f(x) > 0 and negative otherwise. In
the training phase, 〈w, b〉 are computed as the SVM prediction
model from the training data. In the testing phase, the samples
are classified using Eq. 7 with w and b from the prediction
model. To use a kernel matrix as input, the decision function
can be transformed to Eq. 8. In this equation, yi is the
class label of training data, w∗ and αi are parameters of the
prediction model computed from the training data. K(Ri, R)
is the kernel value between a testing representation R and a
training representation Ri [30]. Once we fill the kernel values
with the kernel matrix, we can classify the testing applications.

f(R) = (w∗ +

N∑
i=0

αiyiK(Ri, R)) (8)

Positive

Negative

w

Margin γ

b

Origin

Fig. 3: This figure shows an illustration of the SVM method.
w is the normal vector and b is the perpendicular distance to
the origin.

D. Multiple Kernel Learning

One simple way to combine learning results from different
features is to concatenate different feature vectors to create a
large vector and use it for classification. However, this simple
method assigns the same weight to different features which
may lead to suboptimal learning results compared to training
on individual features because some features may play more
important roles in the learning than other features. Therefore,
we need to assign different weights to different features based

on their significance during learning. Such optimal weights can
be calculated by the MKL algorithm.

MKL is an SVM based method for use with multiple
kernels. An SVM takes one kernel matrix as input to build a
classifier. However, when it comes to learning, it makes more
sense to extract different features from all available sources,
learn these features separately and then combine the learning
results. MKL does this by taking kernel matrices constructed
from different features and different kernels, and is able to
find an optimal kernel combination to build the classifier. In
addition to the SVM αi and bias term w∗, MKL learns one
more parameter which is the kernel weights βj in training.
Eq. 9 shows the resulting kernel method from MKL.

f(R) = (w∗ +

N∑
i=0

αi

M∑
j=0

βjyiKj(Ri, R)) (9)

E. Hierarchical MKL

In our experiments, we choose to use Generalized MKL
with the Spectral Projected Gradient decent optimization algo-
rithm (SPG-GMKL) [18] to perform MKL. Since we construct
multiple kernel matrices for each vector set and each graph
set, we first use SPG-GMKL to combine different kernel
matrices of the same vector or graph feature set. Experiments
show we gain limited classification accuracy improvement in
the first level of MKL. Because we explore multiple kernels
with different parameters and reported only the best result.
Combining different kernels learned from the same features
may not necessary improve the performance. However, in the
second level, SPG-GMKL is applied again to combine all
MKL kernel matrices generated in the first level to learn
the final hybrid classifier and much better improvement is
achieved.

V. EXPERIMENTAL RESULTS

In our method, we extract 10 static and dynamic features
and convert them to 16 feature vector sets and 4 graph feature
sets. We first evaluate the performance of each individual
feature vector set. Then we train one DNN for each vector set
and build the DNN vector set by concatenating DNN learned
features with the original features. We show that using the
DNN features are able to help improving the classification
accuracy. Furthermore, for each of the DNN vector sets,
learning occurs by multiple kernels and the learning results are
combined using MKL. Similarly, we apply SPGK on the graph
sets and construct multiple kernel matrices for each graph set.
The kernel matrices of the graph sets are also combined using
MKL. Finally, all resulting MKL kernel matrices are combined
by applying MKL again to build the final hybrid classifier.
These kernel matrices are evaluated with an SVM algorithm
for a ten-fold cross validation. We also evaluate 15 different
values for the regularization parameter C in SVM, varying
from 2−2 to 212 with a step value of 2. The experiments are
repeated five times with different cross validation partitions
and the average classification accuracy rates are reported.



A. Dataset

We collected 5888 applications from Google Play and
VirusShare 4. To reveal malicious and benign applications,
we submit our samples to the VirusTotal 5 web service and
inspect the output of 51 commercial Anti-Virus (AV) scanners.
We label all applications as malicious that are detected by at
least two of the scanners. The other applications are labeled
as benign. We end up with 1886 malicious applications and
4002 benign applications. The malicious samples were mostly
discovered in 2014, and they are categorized into 39 families
by a commercial AV scanner named AVG 6.

For the dynamic system call sequences of our samples, we
convert them into n-gram graphs in addition to the n-gram
vector representation. Table. I records the statistics including
number of vertices, edges, shortest paths, and heights for the
graphs generated from our malicious and benign samples.
Since 1-gram, 2-gram, 3-gram, and 4-gram graphs have exactly
the same structure, we only show numbers for one set. On
the statistics table, the graphs generated from malware are
slightly larger than the graphs that came from benign samples
on average. We hypothesize that malware tends to spawn
additional processes to perform malicious behaviors.

B. Evaluation Metrics

In our experiments, we train our SVM on a classification
problem with two classes, malicious or benign. A confusion
matrix is used in our method to evaluate the effectiveness of
different kernels. From the confusion matrix, we can calculate
False Positive Rate (FPR) and Accuracy.

We let True Positive (TP ) be the number of Android
malware that are correctly detected, True Negative (TN) be
the number of benign applications that are correctly classified,
False Negative (FN) be the number of malware that are
predicted as benign application, and False Positive (FP )
be the number of benign applications that are classified as
malware. Then our evaluation metrics are defined as follows:

FPR =
FP

FP + TN
(10)

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

C. Results from Original Vector and Graph set

First, we evaluate the performance of each original feature
vector and graph set. As described before, three kernels
consisting of Gaussian kernels, Intersect kernels, and Linear
kernels are applied to our feature vector sets. Similarly, SPGK-
Gaussian, SPGK-Intersect, and SPGK-Linear kernels are ap-
plied on the graph feature sets. For Gaussian kernel, we also
evaluate different σ values from 2−6 to 29 with a step value
of 23. These kernel matrices are fed into an SVM for five runs
of ten-fold cross validation.

In Table II, the first column lists the different feature
sets. The second column shows the best accuracy achieved

4http://virusshare.com
5https://www.virustotal.com/
6http://free.avg.com/us-en/homepage

by each of the original feature vector sets or graph sets.
We observe that the overall best accuracy is achieved by
4-gram vector set converted from instruction sequences. It
reaches 93.5% accuracy. Among the static features other than
instruction sequences, requested permissions, the most used
static feature in previous static analysis methods [13] performs
best and reaches 86.6% accuracy. For the vector and graph sets
converted from system call sequences, 4-gram graph performs
best with an 87.3% accuracy. We can also notice that the graph
set performs better than the corresponding vector set by about
5% on average. This shows that the topology of the graph-
based techniques adds predictive power to the model.

D. Results from DNN

Second, we evaluate the performance of each DNN vector
set. In our deep auto-encoder, number of units in the first layer
equals to the dimension of input feature vector. We only need
to select the layer sizes for the hidden layers of four stacked
RBMs. In our experiment, we evaluate all combinations of
4 layer sizes selected from 128, 256, 512, 1024, 2048, and
4096. The DNN learned features in conjunction with original
features are then evaluated using the same method as described
in Section V-C. In Table II, the third column shows the best
accuracy achieved by combining original and DNN vectors.
The fourth column lists the corresponding network sizes. In the
third column, the data marked in bold shows DNN improves
the performance of the original feature vector. We observe that
15 out of 16 feature vector sets can be improved by appending
DNN learned features. By using DNN features the maximum
accuracy improvement can be achieved is 0.5% by intent filters
and 3-gram system call vectors. The best performance is also
achieved by 4-gram instruction feature vectors at 93.8%.

E. Results from first level MKL

In the third experiment, we apply MKL on each DNN
vector set and each graph set. Since we evaluate multiple Gaus-
sian kernels with different σ values, we first select a Gaussian
kernel matrix with the best performance, then combine it with
Intersect and Linear kernel matrices using SPG-GMKL. The
same process is applied to SPGK-Gaussian, SPGK-Intersect,
and SPGK-Linear for graph sets.

The fifth column of Table II shows the results of applying
MKL on each vector or graph feature set. Similarly, the
data marked in bold means a performance improvement was
achieved. In total, 9 out of 20 DNN vector sets and graph
sets can be improved by MKL, and the maximum absolute
improvement is 0.3%. The sixth column of Table II shows
the weights of Gaussian, Intersect, and Linear kernel matrices
learned by MKL. It should be noted that in vector and graph
sets converted from system call sequences, the weight of
Gaussian kernel is 0.00 because it can actually degrade the
accuracy if we include Gaussian kernel in MKL for these sets.
We observe that improvement from the first level of MKL is
limited because we evaluated multiple kernels with different
parameters and reported the best results. After such a large
kernel search, we may not be able to improve the performance
further even with MKL.



TABLE I: Detailed Statistics of Vertices, Edges, Heights, and Shortest Paths for graph representations of Malicious (M) and
Benign (B) applications.

Vertices Edges Shortest Paths Heights
Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Graph (M) 7 114 29 6 113 28 6 229 42 2 17 4
Graph (B) 7 109 24 6 108 23 6 411 33 2 18 3

TABLE II: This table shows classification results of different representations. Acc. means accuracy, Perm. means permissions,
Req. means requested, Inst. means instructions, g. means gram, Sys. means system call sequence, and vect. means vector.

Original DNN DNN MKL MKL
Acc. Acc. Network Sizes Acc. Weights

Static Features
Perm. APIs 83.9% 84.3% 4096-512-4096-512 84.4% [0.32, 5.63, 5.63]
Used Perm. 80.8% 80.9% 4096-512-4096-512 81.0% [0.33, 5.62, 5.62]
Req. Perm. 86.6% 87.1% 1024-512-256-128 87.3% [0.66, 5.82, 5.59]

Ad. networks 72.8% 72.9% 128-128-128-128 72.9% [0.07, 4.54, 4.54]
Intent filters 84.0% 84.5% 1024-1024-1024-1024 84.5% [3.12, 4.51, 7.68]

Suspicious calls 81.3% 81.5% 4096-4096-4096-4096 81.5% [0.53, 5.88, 5.88]
Network APIs 75.6% 75.7% 512-256-512-256 75.7% [0.01, 8.39, 11.55]

Providers 69.1% 69.1% 4096-512-4096-512 69.1% [0.00, 7.82, 9.74]
Inst. 1-g. 87.0% 87.4% 4096-4096-4096-4096 87.4% [9.97, 4.66, 1.75]
Inst. 2-g. 90.2% 90.3% 512-1024-512-1024 90.6% [9.67, 8.12, 3.79]
Inst. 3-g. 92.3% 92.5% 256-512-256-512 92.5% [8.07, 11.37, 4.86]
Inst. 4-g. 93.5% 93.8% 2048-2048-2048-2048 93.8% [6.90, 11.95, 4.44]

Dynamic System Calls
Sys. 1-g. vect. 80.5% 80.8% 2048-2048-2048-2048 80.8% [0.00, 5.35, 2.56]
Sys. 2-g. vect. 80.9% 81.0% 4096-4096-4096-4096 81.3% [0.00, 6.11, 2.76]
Sys. 3-g. vect. 82.8% 83.3% 512-256-512-256 83.6% [0.00, 7.51, 3.20]
Sys. 4-g. vect. 83.3% 83.7% 256-512-256-512 83.9% [0.00, 8.20, 3.39]

Sys. 1-g. graph 85.3% 85.5% [0.00, 7.84, 3.95]
Sys. 2-g. graph 85.9% 86.2% [0.00, 8.99, 4.22]
Sys. 3-g. graph 87.1% 87.1% [0.00, 9.83, 4.41]
Sys. 4-g. graph 87.3% 87.3% [0.00, 10.43, 4.59]

F. Result from second level MKL

After applying the first level MKL to combine kernel
matrices for each vector or graph set, we apply SPG-GMKL
again to combine the 20 kernel matrices generated by the first
level MKL. The second level MKL weights learned from SPG-
GMKL for static and dynamic features are listed in Table III.
And, classification results of the final hybrid classifier are
shown in Table IV. The best classification accuracy we are
able to achieve using HADM on our dataset is 94.7% with
a FPR of 1.8%. Compared to the best accuracy that can be
achieved by the original features, which is 93.5%, we obtain
a 1.2% absolute improvement.

G. Results from concatenating Original Feature Vectors

To compare our HADM method with traditional feature-
vector-based methods, we perform experiments by concatenat-
ing original feature vectors and feeding them to an SVM for
classification. A total of five experiments were performed. In
the first experiment, we concatenated all original vector sets.
In the second experiment, we concatenated all static feature
vector sets. In the third experiment, we concatenated all static
feature vector sets other than the instruction vector sets and in
the fourth experiment we concatenated all instruction vectors.
Finally, in the last experiment, we concatenated all system call
vector sets.

TABLE III: This table shows MKL weights of the dynamic
features for the final classifier.

Permission Used Req. Ad.
APIs permissions permissions networks
3.104 2.152 4.888 1.905
Intent Suspicious Network Providers
filters calls APIs
1.465 2.678 1.266 1.481

Inst. Inst. Inst. Inst.
1-gram 2-gram 3-gram 4-gram

1.137 1.410 2.699 4.392
syscall syscall syscall syscall

1-gram vect. 2-gram vect. 3-gram vect. 4-gram vect.
0.578 0.673 1.041 1.357

syscall syscall syscall syscall
1-gram graph 2-gram graph 3-gram graph 4-gram graph

1.221 1.498 2.054 2.434

TABLE IV: This table shows classification results from the
final classifier.

TP FN FP TN FPR Accuracy
1647 239 71 3931 1.8% 94.7%



Results of these experiments are shown in Table V. A check
mark means the corresponding vector set is included in con-
catenation. The table shows by simply concatenating all vector
sets, the best accuracy that can be reached is 93.4%, while
concatenating only static features achieves 93.6% accuracy.
These results are close to using just 4-gram instruction vector
set which reaches 93.5% accuracy. These experiments show
that adding more features may not necessarily increase the
classification accuracy. However, in our HADM method, we
refine each feature vector set with DNN and combine different
features using weights learned by MKL. Therefore, we are
able to improve classification accuracy over individual feature
vector sets or graph sets or simply combining them.

TABLE V: This table shows classification results from simply
concatenating the original feature vector sets.

Permission APIs X X X
Used permissions X X X
Req. permissions X X X

Ad. networks X X X
Intent filters X X X

Suspicious calls X X X
Network APIs X X X

Providers X X X
Inst. 1-gram X X X
Inst. 2-gram X X X
Inst. 3-gram X X X
Inst. 4-gram X X X

syscall 1-gram X X
syscall 2-gram X X
syscall 3-gram X X
syscall 4-gram X X

Accuracy 93.4% 93.6% 92.5% 93.4% 83.8%

H. Comparison with State-of-the-art

There is one well-known Android malware classification
method using hybrid analysis that provides public access:
Andrubis7. We submitted all of our 5888 samples to Andrubis
for analysis. For each application, Andrubis is able to return a
maliciousness rating between 0 and 10. In their rating system,
0 means likely benign and 10 means likely malicious. After
we get the maliciousness ratings for our samples, we set a
threshold t. We evaluate t = {1 − 9} where if t = 1 means
that any application returning 1 or higher is classified as
malicious. Table VI shows the classification results obtained
using different thresholds. First, we notice that 572 samples
failed to be executed by Andrubis. However, these samples
are emulated fine in our method. We believe this is because
Andrubis can only analyze applications using API level 8
(Android 2.3) or lower [32]. In our method, API level 17
(Android 4.2) is used. Hence, we are able to emulate more
recent applications. The third row of Table VI shows the
True Positive. The fourth row shows the True Negative. The
fifth row shows classification accuracy without failure which
is calculated as (TP+TN)/(5888-572). The last row shows
overall accuracy which is calculated as (TP+TN)/5888. The
best accuracy Andrubis achieved is 85.2% when we ignore
failed samples and 76.9% when we count the failures as wrong
detections. Consequently, the HADM proposed in this paper

7https://anubis.iseclab.org/

is able to reach a significantly better accuracy on our dataset
than the Andrubis method.

VI. RELATED WORK

A few hybrid methods have been proposed before for
Android malware classification including AASandbox [4],
DroidRanger [44], SmartDroid [43], Andrubis [22], [34],
[21], and Mobile-Sandbox [32]. In contrast to these methods,
HADM applies deep learning techniques to improve the per-
formance of each feature vector set, and it combines the results
from feature vector sets and graph sets using hierarchical
MKL.

Droid-Sec [39] is the first work to apply deep learning to
Android malware classification. It extracts over 200 features
from both static and dynamic analyses and then feeds these
into a DNN for classification. Experiments on 250 malicious
and 250 benign applications show Droid-Sec is able to reach
96.5% accuracy. DroidDetector [40] uses the same method
as proposed in Droid-Sec. It extracts 192 features from both
static and dynamic analyses and characterizes malware using
a DNN-based model. DeepSign is another work that applies
deep learning [8] on Windows malware signature generation
and classification. It uses the Cuckoo sandbox 8 to record
the execution behavior of each malware. Then, it treats the
behavior report as a raw text file and uses uni-grams to
convert each report into a 20,000 bit vector. The bit vectors
are then fed into DNN to generate signatures. At the end, the
signatures are fed into an SVM for classification. Experiments
on 1800 malware samples without benign applications show
that DeepSign is able to reach 96.4% accuracy. Saxe. et al. [29]
also applied deep learning to Windows binary analysis. It
extracts four different sets of static features and converts them
into 1024-length vectors. The vectors are then fed into a DNN
with two hidden layers for classification. In our method, we
extract significantly more features from many more samples.
More importantly, we train a DNN for each individual feature
vector set and combine the DNN learned features with the
original features and then perform classification using hierar-
chical MKL. This method has been shown to improve deep
learning results.

MKL has been studied previously in Windows malware
analysis by Anderson et. al. [2]. They apply Gaussian kernel
and Spectral kernel on the same features and combine them
using MKL. We improve upon their method by using hierar-
chical MKL and multiple features.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a hybrid Android malware
classification method named HADM. We first evaluate the per-
formance of 16 feature vector sets and 4 graph sets generated
from 10 static and dynamic features collected from Android
applications. To improve the classification accuracy, we train
one DNN for each feature vector set and concatenate the DNN
learned features with the original features. Multiple kernels are
then applied on the DNN vector sets and multiple graph kernels
are applied on the graph sets. The kernel learning results are
combined using MKL to further improve accuracy. At the end,

8https://cuckoosandbox.org



TABLE VI: This table shows classification results from Andrubis. Acc. means accuracy and F. means failure.

Threshold 1 2 3 4 5 6 7 8 9
Failure 572 572 572 572 572 572 572 572 572

TP 1253 1212 1176 1146 1130 1114 1083 1040 979
TN 2993 3166 3261 3327 3367 3406 3447 3483 3518

Acc. w/o F. 80.0% 82.4% 83.5% 84.1% 84.6% 85.0% 85.2% 85.1% 84.6%
Overall Acc. 72.1% 74.4% 75.4% 76.0% 76.4% 76.8% 76.9% 76.8% 76.4%

MKL is applied again to the combined resulting MKL kernel
matrices to build the final hybrid classifier.

Evaluation of different features on our dataset show that
the best classification accuracy that can be achieved using
static analysis is 93.5% by 4-gram instruction feature vectors,
and the best accuracy that can be achieved using dynamic
analysis is 87.3% by 4-gram system call graphs. Furthermore,
the application of hierarchical MKL is able to yield a best
classification accuracy among all our models by achieving
94.7%.

Future work includes but not limited to: extracting more
features, experimenting other deep learning techniques, and
trying to improve the performance of system call sequences.
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